Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The central role of angiotensin I-converting enzyme in vertebrate pathophysiology.

Identifieur interne : 000222 ( Psycho/Analysis ); précédent : 000221; suivant : 000223

The central role of angiotensin I-converting enzyme in vertebrate pathophysiology.

Auteurs : David W. Moskowitz [États-Unis] ; Frank E. Johnson

Source :

RBID : pubmed:15379656

Descripteurs français

English descriptors

Abstract

Genomic epidemiologic data, increasingly supported by clinical outcomes results, strongly suggest that overactivity of angiotensin I-converting enzyme (ACE) may underlie most age-related diseases. Angiotensin II, the main product of ACE, is a pleiotropic hormone, capable of serving as a neurotransmitter, growth factor, angiogenesis factor, vasoconstrictor, pro-thrombotic agent, and cytokine. So it is perhaps not surprising that the ACE D/D genotype is associated with several major psychiatric diseases, most cancers except prostate cancer (where the D/D genotype is actually protective), most cardiovascular diseases, most autoimmune diseases, and even infectious diseases like tuberculosis and HIV. In a preliminary study, angiotensin II blockade appeared to hasten recovery from West Nile virus encephalitis; it may be equally useful in SARS. The ACE gene underwent duplication at the origin of Chordata, just before the "Cambrian Explosion" in the number of species. The ancestral, unduplicated form of ACE is still expressed during the terminal differentiation of human spermatocytes, suggesting a critical role in reproduction. The crystal structure of testicular ACE (tACE) was recently published. Computer modeling suggests that tACE may be activated by both mechanical forces and reducing agents. The duplicated form of ACE (somatic ACE, sACE) is expressed in areas of high fluid flow. sACE may auto-dimerize via a novel protein motif, the "disulfide zipper." The sACE dimer is predicted to have higher catalytic efficiency and redox resistance than tACE.

DOI: 10.2174/1568026043387818
PubMed: 15379656


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15379656

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The central role of angiotensin I-converting enzyme in vertebrate pathophysiology.</title>
<author>
<name sortKey="Moskowitz, David W" sort="Moskowitz, David W" uniqKey="Moskowitz D" first="David W" last="Moskowitz">David W. Moskowitz</name>
<affiliation wicri:level="2">
<nlm:affiliation>GenoMed, Inc., 909 S. Taylor, Ave., St. Louis, MO 63110, USA. dwmoskowitz@genomedics.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>GenoMed, Inc., 909 S. Taylor, Ave., St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Frank E" sort="Johnson, Frank E" uniqKey="Johnson F" first="Frank E" last="Johnson">Frank E. Johnson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15379656</idno>
<idno type="pmid">15379656</idno>
<idno type="doi">10.2174/1568026043387818</idno>
<idno type="wicri:Area/PubMed/Corpus">002B49</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B49</idno>
<idno type="wicri:Area/PubMed/Curation">002B49</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002B49</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002988</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002988</idno>
<idno type="wicri:Area/Ncbi/Merge">000A79</idno>
<idno type="wicri:Area/Ncbi/Curation">000A79</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000A79</idno>
<idno type="wicri:doubleKey">1568-0266:2004:Moskowitz D:the:central:role</idno>
<idno type="wicri:Area/Main/Merge">005388</idno>
<idno type="wicri:Area/Main/Curation">005026</idno>
<idno type="wicri:Area/Main/Exploration">005026</idno>
<idno type="wicri:Area/Psycho/Extraction">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The central role of angiotensin I-converting enzyme in vertebrate pathophysiology.</title>
<author>
<name sortKey="Moskowitz, David W" sort="Moskowitz, David W" uniqKey="Moskowitz D" first="David W" last="Moskowitz">David W. Moskowitz</name>
<affiliation wicri:level="2">
<nlm:affiliation>GenoMed, Inc., 909 S. Taylor, Ave., St. Louis, MO 63110, USA. dwmoskowitz@genomedics.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>GenoMed, Inc., 909 S. Taylor, Ave., St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Frank E" sort="Johnson, Frank E" uniqKey="Johnson F" first="Frank E" last="Johnson">Frank E. Johnson</name>
</author>
</analytic>
<series>
<title level="j">Current topics in medicinal chemistry</title>
<idno type="ISSN">1568-0266</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Angiotensin II Type 1 Receptor Blockers</term>
<term>Angiotensin-Converting Enzyme Inhibitors (chemistry)</term>
<term>Angiotensin-Converting Enzyme Inhibitors (pharmacology)</term>
<term>Animals</term>
<term>Genotype</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Models, Molecular</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (physiology)</term>
<term>Protein Conformation</term>
<term>Spermatozoa (enzymology)</term>
<term>Testis (enzymology)</term>
<term>Vertebrates (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Animaux</term>
<term>Antagonistes du récepteur de type 1 de l'angiotensine-II</term>
<term>Conformation des protéines</term>
<term>Génotype</term>
<term>Humains</term>
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine ()</term>
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine (pharmacologie)</term>
<term>Modèles moléculaires</term>
<term>Mâle</term>
<term>Peptidyl-Dipeptidase A ()</term>
<term>Peptidyl-Dipeptidase A (génétique)</term>
<term>Peptidyl-Dipeptidase A (physiologie)</term>
<term>Spermatozoïdes (enzymologie)</term>
<term>Testicule (enzymologie)</term>
<term>Vertébrés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Angiotensin-Converting Enzyme Inhibitors</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Angiotensin-Converting Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Angiotensin II Type 1 Receptor Blockers</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Spermatozoïdes</term>
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Spermatozoa</term>
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
<term>Vertébrés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Vertebrates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Animals</term>
<term>Genotype</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Animaux</term>
<term>Antagonistes du récepteur de type 1 de l'angiotensine-II</term>
<term>Conformation des protéines</term>
<term>Génotype</term>
<term>Humains</term>
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine</term>
<term>Modèles moléculaires</term>
<term>Mâle</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomic epidemiologic data, increasingly supported by clinical outcomes results, strongly suggest that overactivity of angiotensin I-converting enzyme (ACE) may underlie most age-related diseases. Angiotensin II, the main product of ACE, is a pleiotropic hormone, capable of serving as a neurotransmitter, growth factor, angiogenesis factor, vasoconstrictor, pro-thrombotic agent, and cytokine. So it is perhaps not surprising that the ACE D/D genotype is associated with several major psychiatric diseases, most cancers except prostate cancer (where the D/D genotype is actually protective), most cardiovascular diseases, most autoimmune diseases, and even infectious diseases like tuberculosis and HIV. In a preliminary study, angiotensin II blockade appeared to hasten recovery from West Nile virus encephalitis; it may be equally useful in SARS. The ACE gene underwent duplication at the origin of Chordata, just before the "Cambrian Explosion" in the number of species. The ancestral, unduplicated form of ACE is still expressed during the terminal differentiation of human spermatocytes, suggesting a critical role in reproduction. The crystal structure of testicular ACE (tACE) was recently published. Computer modeling suggests that tACE may be activated by both mechanical forces and reducing agents. The duplicated form of ACE (somatic ACE, sACE) is expressed in areas of high fluid flow. sACE may auto-dimerize via a novel protein motif, the "disulfide zipper." The sACE dimer is predicted to have higher catalytic efficiency and redox resistance than tACE.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Johnson, Frank E" sort="Johnson, Frank E" uniqKey="Johnson F" first="Frank E" last="Johnson">Frank E. Johnson</name>
</noCountry>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Moskowitz, David W" sort="Moskowitz, David W" uniqKey="Moskowitz D" first="David W" last="Moskowitz">David W. Moskowitz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Psycho/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Psycho/Analysis/biblio.hfd -nk 000222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Psycho
   |étape=   Analysis
   |type=    RBID
   |clé=     pubmed:15379656
   |texte=   The central role of angiotensin I-converting enzyme in vertebrate pathophysiology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Psycho/Analysis/RBID.i   -Sk "pubmed:15379656" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Psycho/Analysis/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021